Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;12(1):222-34.
doi: 10.1523/JNEUROSCI.12-01-00222.1992.

Expression of peptidylglycine alpha-amidating monooxygenase (EC 1.14.17.3) in the rat central nervous system

Affiliations

Expression of peptidylglycine alpha-amidating monooxygenase (EC 1.14.17.3) in the rat central nervous system

M K Schafer et al. J Neurosci. 1992 Jan.

Abstract

An important step in the posttranslational modification of many bioactive neuropeptides, the carboxy-terminal amidation of glycine-extended peptides, is catalyzed by peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3). The expression of the gene encoding this enzyme was examined in adult rat brain by in situ hybridization histochemistry and immunocytochemistry. PAM mRNA transcripts and PAM-like immunoreactivity were detected in all major brain areas with the exception of the cerebellum. Very high levels of PAM mRNAs were found in the hypothalamic magnocellular neurons, the hippocampal formation, and olfactory cortex. These areas also showed strong PAM-like immunoreactivity. Regions known to contain high levels of amidated neuropeptides also expressed high levels of PAM mRNA. The observed heterogeneous PAM mRNA levels may reflect differences in the peptidergic activity of different neuronal systems. Interestingly, all pyramidal neurons of the hippocampus expressed very high levels of PAM mRNA, although no identified amidated peptide matches this distribution completely. Furthermore, PAM was not expressed exclusively in neuronal tissue but was also present in non-neuronal tissue. PAM transcripts could be localized in certain ventricular ependymal cells, with the highest expression in the lateral ventricle. Localization of PAM to non-neuronal cells and neurons not known to produce alpha-amidated peptides suggests that these cells may be producing as yet unidentified amidated neuropeptides.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources