Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;82(2):343-53.
doi: 10.1002/jbm.a.31070.

Characterization of biomimetic calcium phosphate on phosphorylated chitosan films

Affiliations

Characterization of biomimetic calcium phosphate on phosphorylated chitosan films

B M Chesnutt et al. J Biomed Mater Res A. 2007 Aug.

Abstract

This study examined the effect of chitosan degree of deacetylation (DDA), concentration of simulated body fluid (SBF), and mineralization time on the composition, structure, and crystallinity of calcium phosphate (CaP) biomimetically deposited on chitosan and on osteoblast cell growth. Phosphorylated chitosan films of 92.3%, 87.4%, and 80.6% DDA were soaked in SBF (1.0x or 1.5x) for 7, 14, or 21 days. Scanning electron microscopy revealed that CaP precipitated from 1.5x SBF had a porous, granular morphology; while the coatings precipitated in 1.0x SBF were smoother and more uniform. X-ray diffraction showed that films mineralized in 1.0x SBF were amorphous, while films mineralized in 1.5x SBF for 21 days exhibited crystalline peaks similar to hydroxyapatite, with the most crystalline peaks seen on 92.3% DDA chitosan. When mineralized films were placed in cell media for 14 days, more calcium phosphate precipitated onto all films, and the most calcium phosphate was found on 92.3% DDA films mineralized in 1.5x SBF. After seven days of osteoblast culture, there were approximately three times as many cells (based on DNA measurements, p < 0.05) on 92.3% DDA films soaked in 1.0x SBF for seven or 21 days than on 80.6% DDA films soaked in 1.0x SBF for any length of time or any films soaked in 1.5x SBF. The DDA of chitosan, concentration of SBF and mineralization time affect the structure of and biological response to chitosan/biomimetic CaP films, and these factors must be considered when designing new materials to be used in orthopaedic and dental/craniofacial implant applications.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources