Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Feb 12;7(2):218-26.
doi: 10.1002/mabi.200600211.

Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey

Affiliations
Comparative Study

Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey

Martin Koller et al. Macromol Biosci. .

Abstract

Three different microbial wild-type strains are compared with respect to their potential as industrial scale polyhydroxyalkanoate (PHA) producers from the feed stock whey lactose. The halophilic archaeon Haloferax mediterranei as well as two eubacterial strains (Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava) are investigated. H. mediterranei accumulated 50 wt.-% of poly-3-(hydroxybutyrate-co-8%-hydroxyvalerate) from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity q(p): 9.1 mg x g(-1) x h(-1)). Using P. hydrogenovora, the final percentage of poly-3-hydroxybutyrate (PHB) amounted to 12 wt.-% (q(p): 2.9 mg x g(-1) x h(-1)). With H. pseudoflava, it was possible to reach 40 wt.-% P-3(HB-co-5%-HV) on non-hydrolyzed whey lactose plus addition of valeric acid as 3HV precursor (q(p): 12.5 mg x g(-1) x h(-1)). A detailed characterization of the isolated biopolyesters and an evaluation with regard to the economic feasibility completes the study.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources