Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;92(2):148-53.
doi: 10.1111/j.1423-0410.2006.00871.x.

Single nucleotide polymorphism profiling assay to exclude serum sample mix-up

Affiliations

Single nucleotide polymorphism profiling assay to exclude serum sample mix-up

C J J Huijsmans et al. Vox Sang. 2007 Feb.

Abstract

Background and objectives: Sample mix-ups are a threat to the validity of clinical laboratory test results. To detect serum sample mix-ups we developed a single nucleotide polymorphism (SNP) profiling test. SNPs are frequent sequence variations in the human genome. Each individual has a unique combination of these nucleotide variations.

Materials and methods: Predeveloped SNP amplification assays are commercially available. We recently discovered that these SNP assays could be applied to serological samples, which is not self-evident because a key step in serum preparation is removal of white blood cells, the major source of DNA, from blood. DNA was extracted from serum samples. Real-time polymerase chain reaction (PCR) analysis of the purified DNA using a selection of 10 SNP assays provided SNP profiles.

Results: The applicability of the SNP profiling test was demonstrated by means of a case where hepatitis E virus serological determinations of four serum samples of one patient seemed inconsistent. SNP profiling of the samples demonstrated that this was due to the enzyme-linked immunosorbent assay test instead of sample mix-up.

Conclusion: We have developed an SNP profiling assay that provides a way to link human serum samples to a source, without post-PCR processing. The chance for two randomly chosen individuals to have an identical profile is 1 in 18 000. Solving potential serum sample mix-ups will secure downstream evaluations and critical decisions concerning the patients involved.

PubMed Disclaimer

LinkOut - more resources