Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;28(14):2350-7.
doi: 10.1016/j.biomaterials.2007.01.035. Epub 2007 Feb 12.

EDC/NHS-mediated heparinization of small intestinal submucosa for recombinant adeno-associated virus serotype 2 binding and transduction

Affiliations

EDC/NHS-mediated heparinization of small intestinal submucosa for recombinant adeno-associated virus serotype 2 binding and transduction

Tse-Wei Yue et al. Biomaterials. 2007 May.

Abstract

A major challenge in the use of gene transfer vectors as therapeutic tools is controlling vector administration at a desired tissue site. One potential solution is implanting tissue-engineering constructs loaded with gene transfer vectors such as viruses for localized transgene delivery. In this work, we conjugated recombinant adeno-associated virus serotype 2 (rAAV2) to a heparinized small intestinal submucosa (H-SIS) matrix, which resulted in vector transduction upon cellular adhesion. H-SIS was prepared by incorporating heparin, the rAAV2 receptor, into SIS through N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated crosslinking. Incorporated heparin adsorbed rAAV2 onto the H-SIS matrix for conjugation. Using green fluorescent protein and beta-galactosidase as reporters, we showed that conjugated rAAV2 was active and capable of mediating transgene delivery in cell culture. Additionally, we applied H-SIS to adsorb unpurified rAAV2 from the crude lysate of packaging cells for conjugation, avoiding the use of ultracentrifugation or chromatography in preparation of infectious rAAV2 for transduction. Our work provides a unique, modified tissue substrate H-SIS for rAAV2 binding and transduction, which can be a useful tool in developing localized gene transfer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources