Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar;8(2):169-81.
doi: 10.1111/j.1467-789X.2006.00277.x.

Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte

Affiliations
Review

Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte

M S Bray et al. Obes Rev. 2007 Mar.

Abstract

Obesity is one of the most profound public health problems today, and simplistic explanations based on excessive nutritional consumption or lack of physical activity are inadequate to account for this dramatic and literal growth in our world population. Recent reports have suggested that disruptions in sleep patterns, often linked to our '24-h' lifestyle, are associated with increased body fat and altered metabolism, although the cause-effect relationship for these associations has yet to be elucidated. Abnormal sleep/wake patterns likely alter intracellular circadian clocks, which are molecular mechanisms that enable the cell/tissue/organism to anticipate diurnal variations in its environment. The environment may include circulating levels of nutrients (e.g. glucose, fatty acids and triglycerides) and various hormones (e.g. insulin, glucocorticoids). As such, alterations in this molecular mechanism, in particular within the adipocyte, likely induce metabolic changes that may potentiate disrupted metabolism, adipose accumulation and/or obesity. Although diurnal variations in adipokines and adipose tissue metabolism have been observed, little is known regarding the molecular mechanisms that influence these events.

PubMed Disclaimer

Publication types