Observation of multiple intermediates in alpha-synuclein fibril formation by singular value decomposition analysis
- PMID: 17300751
- DOI: 10.1016/j.bbrc.2007.01.162
Observation of multiple intermediates in alpha-synuclein fibril formation by singular value decomposition analysis
Abstract
One of the most well known characteristics for Parkinson's disease (PD) is a polymerization of wild-type or mutant alpha-synuclein into aggregates and fibrils, commonly observed as Lewy bodies and Lewy neuritis in PD patients. Although numerous studies on alpha-synuclein fibrillation have been reported, the molecular mechanisms of aggregation and fibrillation are not well understood yet. In the present study, structural properties and propensities to form fibrils of wild-type, A30P, E46K, and A53T alpha-synucleins were investigated using fluorescence and circular dichroism (CD) methods. The results from these studies were analyzed using singular value decomposition (SVD) method which estimates a number of conformationally independent species for a given process. The time-dependent CD spectra of the wild-type alpha-synuclein indicated a multi-step process in the fibril formation, and SVD analysis using the time-dependent CD spectra revealed that five or nine intermediates were formed at the early stage of fibrillation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical