Freeze-substitution studies of bacteria
- PMID: 1730077
- DOI: 10.1016/0892-0354(92)90006-c
Freeze-substitution studies of bacteria
Abstract
Typically, models of bacterial structure combine biochemical data obtained from bulk analyses of cell populations with electron microscopic observation of individual cells. Recent development of a battery of cryotechniques specific for biological electron microscopy have begun to supercede routine procedures such as conventional thin sectioning. One of these cryotechniques, freeze-substitution, combines the advantages of ultrarapid freezing with standard microtomy methods. This technique is particularly well suited to the examination of bacterial structure and has yielded additional ultrastructural information consistent with biochemical data but often challenging models of cell structure obtained from conventional microscopical methods. In addition to retaining more accurately the spatial distribution of cell components, freeze-substitution has been successfully combined with immunochemical labelling techniques and has enabled identification and localization of specific molecules both within the cell and on the cell surface. In this review, I describe current ideas on bacterial ultrastructure, modified in accordance with new data obtained from recent freeze-substitution studies.
Similar articles
-
Fine structure of Tritrichomonas foetus as seen using cryotechniques.Microsc Res Tech. 1994 Sep 1;29(1):37-46. doi: 10.1002/jemt.1070290106. Microsc Res Tech. 1994. PMID: 8000083
-
Impact of freeze substitution on biological electron microscopy.Microsc Res Tech. 1993 Apr 1;24(5):400-22. doi: 10.1002/jemt.1070240506. Microsc Res Tech. 1993. PMID: 8318724 Review.
-
Plunge Freezing: A Tool for the Ultrastructural and Immunolocalization Studies of Suspension Cells in Transmission Electron Microscopy.J Vis Exp. 2017 May 5;(123):54874. doi: 10.3791/54874. J Vis Exp. 2017. PMID: 28518127 Free PMC article.
-
Advantages of fast-freeze fixation followed by freeze-substitution for the preservation of cell integrity.J Electron Microsc Tech. 1991 Aug;18(4):395-405. doi: 10.1002/jemt.1060180408. J Electron Microsc Tech. 1991. PMID: 1919792
-
Surface layers of bacteria.Microbiol Rev. 1991 Dec;55(4):684-705. doi: 10.1128/mr.55.4.684-705.1991. Microbiol Rev. 1991. PMID: 1723487 Free PMC article. Review.
Cited by
-
The Gram-Positive Bacterial Cell Wall.Microbiol Spectr. 2019 May;7(3):10.1128/microbiolspec.gpp3-0044-2018. doi: 10.1128/microbiolspec.GPP3-0044-2018. Microbiol Spectr. 2019. PMID: 31124431 Free PMC article. Review.
-
Ultrastructural analysis of the rugose cell envelope of a member of the Pasteurellaceae family.J Bacteriol. 2013 Apr;195(8):1680-8. doi: 10.1128/JB.02149-12. Epub 2013 Feb 1. J Bacteriol. 2013. PMID: 23378507 Free PMC article.
-
Tertiary structure of bacterial murein: the scaffold model.J Bacteriol. 2003 Jun;185(11):3458-68. doi: 10.1128/JB.185.11.3458-3468.2003. J Bacteriol. 2003. PMID: 12754246 Free PMC article.
-
Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze-substitution.J Bacteriol. 1992 Nov;174(22):7159-67. doi: 10.1128/jb.174.22.7159-7167.1992. J Bacteriol. 1992. PMID: 1429438 Free PMC article.
-
High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy.J Bacteriol. 2005 Nov;187(22):7619-30. doi: 10.1128/JB.187.22.7619-7630.2005. J Bacteriol. 2005. PMID: 16267286 Free PMC article.