Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar;18(2):110-4.
doi: 10.1097/ICU.0b013e3280895aea.

Glaucoma as a neurodegenerative disease

Affiliations
Review

Glaucoma as a neurodegenerative disease

Neeru Gupta et al. Curr Opin Ophthalmol. 2007 Mar.

Abstract

Purpose of review: Glaucoma is a leading cause of irreversible world vision loss characterized by progressive retinal ganglion cell death. Elevated eye pressure is a major risk factor for glaucoma; however, despite effective medical and surgical therapies to reduce intraocular pressure, progressive vision loss among glaucoma patients is common. These observations suggest that mechanisms independent of intraocular pressure are also implicated in glaucomatous degeneration. Numerous similarities exist between glaucoma and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Similarities include the selective loss of neuron populations, transsynaptic degeneration in which disease spreads from injured neurons to connected neurons, and common mechanisms of cell injury and death.

Recent findings: Glaucomatous injury to retinal ganglion cells has profound effects on target vision structures within the brain, including the lateral geniculate nucleus and visual cortex in experimental primate and human glaucoma. Mechanisms involved in central visual system damage in glaucoma include oxidative injury and glutamate toxicity, as seen in neurodegenerative diseases.

Summary: Glaucoma as a neurodegenerative disease is a valid working hypothesis to understand neural injury in the visual system. This paradigm may stimulate the discovery of innovative intraocular pressure-independent strategies to help prevent loss of vision in glaucoma patients.

PubMed Disclaimer

Publication types