Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;148(5):2075-84.
doi: 10.1210/en.2006-1315. Epub 2007 Feb 15.

Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice

Affiliations

Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice

Toshinori Aoyagi et al. Endocrinology. 2007 May.

Abstract

Arginine-vasopressin (AVP) is known to be involved in maintaining glucose homeostasis, and AVP-resistance is observed in poorly controlled non-insulin-dependent diabetes mellitus subjects, resulting in a lowered plasma volume. Recently we reported that V1a vasopressin receptor-deficient (V1aR(-/-)) mice exhibited a decreased circulating blood volume and hypermetabolism of fat accompanied with impaired insulin-signaling. Here we further investigated the roles of the AVP/V1a receptor in regulating glucose homeostasis and plasma volume using V1aR(-/-) mice. The plasma glucose levels at the baseline or during a glucose tolerance test were higher in V1aR(-/-) than wild-type (WT) mice. Moreover, a hyperinsulinemic-euglycemic clamp revealed that the glucose infusion rate was significantly lower in V1aR(-/-) mice than in WT mice and that hepatic glucose production was higher in V1aR(-/-) mice than WT mice. In contrast to the increased hepatic glucose production, the liver glycogen content was decreased in the mutant mice. These results indicated that the mutant mice had impaired glucose tolerance. Furthermore, feeding V1aR(-/-) mice a high-fat diet accompanied by increased calorie intake resulted in significantly overt obesity in comparison with WT mice. In addition, we found that the circulating plasma volume and aldosterone level were decreased in V1aR(-/-) mice, although the plasma AVP level was increased. These results suggested that the effect of AVP on water recruitment was disturbed in V1aR(-/-) mice. Thus, we demonstrated that one of the AVP-resistance conditions resulting from deficiency of the V1a receptor leads to decreased plasma volume as well as impaired glucose homeostasis, which can progress to obesity under conditions of increased calorie intake.

PubMed Disclaimer

Publication types

MeSH terms