Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr:1101:110-38.
doi: 10.1196/annals.1389.025. Epub 2007 Feb 15.

Modeling myometrial smooth muscle contraction

Affiliations
Review

Modeling myometrial smooth muscle contraction

Limor Bursztyn et al. Ann N Y Acad Sci. 2007 Apr.

Abstract

Existing models of uterine contractions assumed a top-down approach in which the function at the organ or tissue level was explained by the behavior of smaller basic units. A new model of the excitation-contraction process in a single myometrial myocyte was recently developed. This model may be used in a bottom-up approach for the description of the contribution of cellular phenomena to the overall performance of the tissue or organ. In this review, we briefly survey current knowledge of uterine electrophysiology and contractility as well as current modeling techniques, which were successfully used to study the function of various types of muscle cells. In the physiological part of the review, we relate to mechanisms of intracellular Ca(2+) control, Ca(2+) oscillations, and Ca(2+) waves and to the various membranal transport mechanisms regulating ion exchange between the intracellular and extracellular spaces. In addition, we describe the process leading from excitation to contraction. In the modeling part of the review, we present the Hodgkin-Huxley (HH) model of excitation in the squid axon as well as models of Ca(2+) control and the latch-bridge model of Hai and Murphy describing the kinetics of smooth muscle cell (SMC) contraction. We also present integrative models describing more than one of these phenomena. Finally, we suggest how these modeling techniques can be applied to modeling myometrial contraction and thus may significantly contribute to current efforts of research of uterine function.

PubMed Disclaimer

LinkOut - more resources