Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr:1101:377-88.
doi: 10.1196/annals.1389.012. Epub 2007 Feb 15.

Cardiovascular developmental insights from embryos

Affiliations
Review

Cardiovascular developmental insights from embryos

Bradley B Keller et al. Ann N Y Acad Sci. 2007 Apr.

Abstract

We investigate cardiovascular (CV) developmental physiology and biomechanics in order to understand the dramatic acquisition of form and function during normal development and to identify the adaptive mechanisms that allow embryos to survive adverse genetic and epigenetic events. Cardiovascular patterning, morphogenesis, and growth occur via highly conserved genetic mechanisms. Structural and functional maturation of the embryonic heart is also conserved across a broad range of species with evidence for load dependence from onset of the heartbeat. The embryonic heart dynamically adapts to changes in biomechanical loading conditions and for reasons not yet clear, adapts better to increased than to decreased mechanical load. In mammals, maternal cardiovascular function dynamically impacts embryonic/fetal growth and hemodynamics and these interactions can now be studied longitudinally using high-resolution noninvasive techniques. Maternal exposure to hypoxia and to bioactive chemicals, such as caffeine, can rapidly impact embryonic/fetal cardiovascular function, growth, and outcome. Finally, tissue engineering approaches can be applied to investigate basic developmental aspects of the embryonic myocardium. We use isolated embryonic and fetal chick, mouse, or rat cardiac cells to generate 3D engineered early embryonic cardiac tissues (EEECT). EEECT retains the morphologic and proliferative features of embryonic myocardium, responds to increased mechanical load with myocyte hyperplasia, and may be an excellent future material for use in cardiac repair and regeneration. These insights into cardiovascular embryogenesis are relevant to identifying mechanisms for congenital cardiovascular malformations and for developing cell- and tissue-based strategies for myocardial repair.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources