Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;149(2):357-69.
doi: 10.1016/0012-1606(92)90291-n.

Identification and characterization of alternatively spliced fibronectin mRNAs expressed in early Xenopus embryos

Affiliations

Identification and characterization of alternatively spliced fibronectin mRNAs expressed in early Xenopus embryos

D W DeSimone et al. Dev Biol. 1992 Feb.

Abstract

Sequence analysis of cDNA clones encoding fibronectin (FN) from Xenopus laevis reveals extensive amino acid identities with other vertebrate FNs, including the presence of the Arg-Gly-Asp (RGD) cell attachment site in type III-10 and of a second, cell-binding site (EILDV) in the alternative spliced V region of the protein. These cDNAs have been used to study the expression of FN mRNAs during early development. Overall, levels of maternal FN mRNA remain constant until the mid- to late-gastrula stage when the accumulation of new FN transcripts is first apparent. RNase protection analyses reveal that the pattern of FN alternative splicing is similar to that reported for other species and does not change with the shift from maternal to zygotic mRNA expression. The cellular forms of the FN protein predominate in the early embryo with the EIIIA and EIIIB exons included in most mRNAs at this time. A comparison of V-region alternative splicing between embryonic and adult liver RNAs indicates a segment of 345 nucleotides that can be either completely excluded or included in mature FN transcripts but there is no evidence for additional V-region variants. Maternal mRNAs encoding alternatively spliced forms of FN can be specifically eliminated from Xenopus oocytes following the injection of antisense oligodeoxynucleotides into the cytoplasm, thereby making it possible to analyze the structure, composition, and function of FN mRNAs in early embryos.

PubMed Disclaimer

Publication types

LinkOut - more resources