Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;6(1):81-92.
doi: 10.1101/gad.6.1.81.

Max: functional domains and interaction with c-Myc

Affiliations
Free article

Max: functional domains and interaction with c-Myc

G J Kato et al. Genes Dev. 1992 Jan.
Free article

Abstract

The product of the c-myc proto-oncogene is a DNA-binding protein, the deregulated expression of which is associated with a variety of malignant neoplasms. The cDNA for the max gene was recently cloned as a result of the ability of its protein product to interact with the c-Myc protein. We studied bacterially produced Max, c-Myc, and a series of truncated c-Myc proteins. Full-length c-Myc alone cannot bind DNA. However, a truncated c-Myc protein comprising the basic, helix-loop-helix, and leucine zipper regions can bind specifically to DNA bearing the sequence GGGCAC(G/A)TGCCC. Max protein, either alone or in a heteromeric complex with full-length c-Myc, binds to the same core sequence. Using a novel combination of chemical and photo-cross-linking analysis, we demonstrate that either Max or a c-Myc/Max heteromeric complex binds to DNA virtually exclusively in a dimeric structure. Using fusion proteins in cultured cells, we establish a number of functional characteristics of Max. First, we show that Max can interact with c-Myc intracellularly in a manner dependent on the integrity of the helix-loop-helix and leucine zipper motifs. Second, a nuclear localization domain that contains the sequence PQSRKKLR is mapped to the carboxy-terminal region of Max. Third, Max lacks a transcriptional activation domain that is functional in Chinese hamster ovary cells when fused to a heterologous DNA-binding domain. These data suggest that Max may serve as a cofactor for c-Myc in transcriptional activation or, by itself, as a transcriptional repressor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources