The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space
- PMID: 1730608
The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space
Abstract
Protein import into chloroplasts is initiated by a binding interaction between a precursor protein and the surface of the outer envelope. The binding step was previously shown to be energy-dependent (Olsen, L. J., Theg, S. M., Selman, B. R., and Keegstra, K. (1989) J. Biol. Chem. 264, 6724-6729). We took advantage of the broad nucleotide specificity of the energy requirement for binding to investigate the site of the nucleoside triphosphate (NTP) requirement. GTP supported precursor binding to chloroplasts. It was not converted to ATP, as determined by direct ATP measurements, and was not transported across the inner envelope. Thus, GTP supported binding from either the intermembrane space or outside the outer membrane. To distinguish between an intermembrane space and an external NTP requirement, we experimentally manipulated the NTP levels inside and outside chloroplasts. Internally generated ATP was able to support binding in the presence of an external membrane-impermeant ATP trap. Therefore, since GTP supported binding from either the intermembrane space or outside the chloroplast, and ATP supported binding from either the intermembrane space or the stroma, we concluded that the site of NTP utilization for precursor binding to chloroplasts was the intermembrane space between the two envelope membranes.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
