Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 25;267(3):1904-9.

Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1

Affiliations
  • PMID: 1730726
Free article

Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1

O Heidenreich et al. J Biol Chem. .
Free article

Abstract

Three ribozymes targeted against different sites of the long terminal repeat RNA (LTR RNA) of human immunodeficiency virus type 1 cleaved a LTR RNA transcript 1,000 x less efficiently than corresponding short synthetic oligoribonucleotide substrates. Varying the stem lengths of the ribozyme resulted in changes of the catalytic efficiency. Almost no cleavage was observed for a ribozyme forming only 10 base pairs instead of 14 with the LTR RNA. Increasing the base pairs to 16 or elongation of the stem formed within the ribozyme revealed only small changes in kcat/Km. The influence of chemical modifications within the ribozyme on the cleavage of the LTR RNA was also examined. 2'-Fluorocytidine substitutions as well as four terminal phosphorothioate internucleotidic linkages influenced the catalytic efficiency of ribozymes only negligibly. However, substitution of uridine by 2'-fluorouridine resulted in a 5-fold decrease of kcat/Km. A ribozyme containing all these modifications revealed only a 7-fold lower catalytic efficiency but a markedly increased stability in cell culture supernatant. These results demonstrate that it is possible to increase the stability of ribozymes toward nucleases without a serious loss in catalytic efficiency.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources