Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;292(6):H3089-102.
doi: 10.1152/ajpheart.01309.2006. Epub 2007 Feb 16.

Effects of early afterdepolarizations on reentry in cardiac tissue: a simulation study

Affiliations
Free article

Effects of early afterdepolarizations on reentry in cardiac tissue: a simulation study

Ray B Huffaker et al. Am J Physiol Heart Circ Physiol. 2007 Jun.
Free article

Abstract

Early afterdepolarizations (EADs) are classically generated at slow heart rates when repolarization reserve is reduced by genetic diseases or drugs. However, EADs may also occur at rapid heart rates if repolarization reserve is sufficiently reduced. In this setting, spontaneous diastolic sarcoplasmic reticulum (SR) Ca release can facilitate cellular EAD formation by augmenting inward currents during the action potential plateau, allowing reactivation of the window L-type Ca current to reverse repolarization. Here, we investigated the effects of spontaneous SR Ca release-induced EADs on reentrant wave propagation in simulated one-, two-, and three-dimensional homogeneous cardiac tissue using a version of the Luo-Rudy dynamic ventricular action potential model modified to increase the likelihood of these EADs. We found: 1) during reentry, nonuniformity in spontaneous SR Ca release related to subtle differences in excitation history throughout the tissue created adjacent regions with and without EADs. This allowed EADs to initiate new wavefronts propagating into repolarized tissue; 2) EAD-generated wavefronts could propagate in either the original or opposite direction, as a single new wave or two new waves, depending on the refractoriness of tissue bordering the EAD region; 3) by suddenly prolonging local refractoriness, EADs caused rapid rotor displacement, shifting the electrical axis; and 4) rapid rotor displacement promoted self-termination by collision with tissue borders, but persistent EADs could regenerate single or multiple focal excitations that reinitiated reentry. These findings may explain many features of Torsades des pointes, such as perpetuation by focal excitations, rapidly changing electrical axis, frequent self-termination, and occasional degeneration to fibrillation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources