Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Apr;30(2):159-64.
doi: 10.1007/s10545-007-0519-9. Epub 2007 Feb 16.

Glycogen storage disease types I and II: treatment updates

Affiliations
Review

Glycogen storage disease types I and II: treatment updates

D D Koeberl et al. J Inherit Metab Dis. 2007 Apr.

Abstract

Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Analysis of the response to AAV vectors in GSD Ia. Blood glucose in an affected GSD Ia dog following administration of an AAV2/8 vector encoding human G6Pase at 3 and 10 days of age (1 × 1013 vector particles/kg each dose). The range for untreated, affected dogs is shown (box)

References

    1. Amalfitano A, McVie-Wylie AJ, Hu H, et al. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc Natl Acad Sci USA. 1999;96:8861–8866. - PMC - PubMed
    1. Amalfitano A, Bengur AR, Morse RP, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med. 2001;3:132–138. - PubMed
    1. An Y, Young SP, Kishnani PS, et al. Glucose tetrasaccharide as a biomarker for monitoring the therapeutic response to enzyme replacement therapy for Pompe disease. Mol Genet Metab. 2005;85:247–254. - PubMed
    1. Beaty RM, Jackson M, Peterson D, et al. Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors. Gene Ther. 2002;9:1015–1022. - PubMed
    1. Bijvoet AG, Van Hirtum H, Kroos MA, et al. Human acid alphaglucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet. 1999;8:2145–2153. - PubMed

MeSH terms