Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2007 Feb 19:4:3.
doi: 10.1186/1743-0003-4-3.

Design strategies to improve patient motivation during robot-aided rehabilitation

Affiliations
Clinical Trial

Design strategies to improve patient motivation during robot-aided rehabilitation

Roberto Colombo et al. J Neuroeng Rehabil. .

Abstract

Background: Motivation is an important factor in rehabilitation and frequently used as a determinant of rehabilitation outcome. Several factors can influence patient motivation and so improve exercise adherence. This paper presents the design of two robot devices for use in the rehabilitation of upper limb movements, that can motivate patients during the execution of the assigned motor tasks by enhancing the gaming aspects of rehabilitation. In addition, a regular review of the obtained performance can reinforce in patients' minds the importance of exercising and encourage them to continue, so improving their motivation and consequently adherence to the program. In view of this, we also developed an evaluation metric that could characterize the rate of improvement and quantify the changes in the obtained performance.

Methods: Two groups (G1, n = 8 and G2, n = 12) of patients with chronic stroke were enrolled in a 3-week rehabilitation program including standard physical therapy (45 min. daily) plus treatment by means of robot devices (40 min., twice daily) respectively for wrist (G1) and elbow-shoulder movements (G2). Both groups were evaluated by means of standard clinical assessment scales and the new robot measured evaluation metric. Patients' motivation was assessed in 9/12 G2 patients by means of the Intrinsic Motivation Inventory (IMI) questionnaire.

Results: Both groups reduced their motor deficit and showed a significant improvement in clinical scales and the robot measured parameters. The IMI assessed in G2 patients showed high scores for interest, usefulness and importance subscales and low values for tension and pain subscales.

Conclusion: Thanks to the design features of the two robot devices the therapist could easily adapt training to the individual by selecting different difficulty levels of the motor task tailored to each patient's disability. The gaming aspects incorporated in the two rehabilitation robots helped maintain patients' interest high during execution of the assigned tasks by providing feedback on performance. The evaluation metric gave a precise measure of patients' performance and thus provides a tool to help therapists promote patient motivation and hence adherence to the training program.

PubMed Disclaimer

Figures

Figure 1
Figure 1
a) One degree of freedom (DoF) robot device for wrist rehabilitation. b) Two DoF robot device for elbow-shoulder rehabilitation.
Figure 2
Figure 2
Time course of the robot measured parameters in a representative patient treated by the wrist rehabilitation device.
Figure 3
Figure 3
Time course of the robot measured parameters in a representative patient treated by the elbow-shoulder rehabilitation device.
Figure 4
Figure 4
Single subject analysis for the AMI and Mean Velocity parameters. Each bar reports the mean value obtained by the patient at the 3rd training session (hatched area) and the change obtained at the end of treatment (dotted area = significant change, white area = non significant change).

Similar articles

Cited by

References

    1. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6:75–87. doi: 10.1109/86.662623. - DOI - PMC - PubMed
    1. Volpe B, Krebs HI, Hogan N, Edelstein OTRL, Diels C, Aisen M. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology. 2000;54:1938–1944. - PubMed
    1. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hughes R, Hogan N. Robotic therapy for chronic motor impairments after stroke: Follow-up results. Arch Phys Med Rehabi. 2004;85:1106–1111. doi: 10.1016/j.apmr.2003.11.028. - DOI - PubMed
    1. Burgar CG, Lum PS, Shor PC, Machiel Van der Loos HF. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37:663–673. - PubMed
    1. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952–959. doi: 10.1053/apmr.2001.33101. - DOI - PubMed

Publication types