Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;260(1):104-9.

Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites

Affiliations
  • PMID: 1731035

Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites

M A Carroll et al. J Pharmacol Exp Ther. 1992 Jan.

Abstract

The renovascular effects of cytochrome P450-dependent arachidonic acid (P450-AA) metabolites synthesized by rat and rabbit kidneys were studied in the rabbit isolated kidney under conditions of constant flow and examined for their dependency on cyclooxygenase relative to their expression of vasoactivity. Kidneys were perfused with Krebs-Henseleit solution, and perfusion pressure was raised to levels of 90 to 110 mm Hg with the addition of 2 to 3 microM phenylephrine to the perfusate. Close arterial injection of 1 to 20 micrograms of 5,6-, 8,9- and 11,12-epoxyeicosatrienoic acid (EET) dose-dependently decreased perfusion pressure. The 5,6-EET was the most potent and the only epoxide dependent on cyclooxygenase for expression of vasoactivity, being inhibited by indomethacin (2.8 microM). In contrast, 14,15-EET resulted in dose-dependent increases in perfusion pressure. The vasodilator effects of the omega- and omega-1 oxidation products, 20-hydroxyeicosatetraenoic acid (HETE) and the stereoisomers of 19-HETE, were also inhibited by indomethacin. Furthermore, the renal vasodilator responses to 5,6-EET were not inhibited by either superoxide dismutase (10 U) or catalase (40 U) and, therefore, were unrelated to the formation of oxygen radicals generated during transformation of the epoxide by cyclooxygenase. As 5,6-EET and 19- and 20-HETE are synthesized by the renal tubules and can affect movement of salt and water, expression of vasoactivity by P450-dependent arachidonic acid metabolites, and after release from a nephron segment, may represent a mechanism that couples altered renal tubular function to appropriate changes in local blood flow.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources