Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;27(11):1792-7.
doi: 10.1038/sj.jcbfm.9600474. Epub 2007 Feb 21.

Bacterial hydrogen peroxide contributes to cerebral hyperemia during early stages of experimental pneumococcal meningitis

Affiliations

Bacterial hydrogen peroxide contributes to cerebral hyperemia during early stages of experimental pneumococcal meningitis

Olaf M Hoffmann et al. J Cereb Blood Flow Metab. 2007 Nov.

Abstract

Alterations of blood flow contribute to major clinical complications in invasive infections such as sepsis and bacterial meningitis. As a unique feature streptococci -- in particular, Streptococcus pneumoniae, the most frequent pathogen in bacterial meningitis -- release hydrogen peroxide (H(2)O(2)) because of the absence of functional catalase. In a 6 h rat model of experimental meningitis, we studied the impact of bacterial H(2)O(2) production on regional cerebral blood flow (rCBF) and intracranial pressure (ICP). Compared to wild-type D39 pneumococci, the increase of rCBF was diminished in meningitis induced by the H(2)O(2) defective SpxB(-) mutant (maximum increase, 135% +/- 17% versus 217% +/- 23% of the individual baseline; P<0.01) or after treatment of D39-induced meningitis with H(2)O(2)-degrading catalase or with tetraethylammonium (TEA), a blocker of calcium-sensitive potassium channels, which mediate H(2)O(2)-induced vasodilation. Catalase did not significantly reduce the remaining rCBF increase caused by SpxB(-), supporting the predominant role of bacterial H(2)O(2). We conclude that in addition to host-sided mediators, bacterial-derived H(2)O(2) acts as a potent vasodilator, which accounts for a certain proportion of the early cerebral hyperperfusion in pneumococcal meningitis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources