Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;6(4):1482-91.
doi: 10.1021/pr060605f. Epub 2007 Feb 21.

Catch-and-release reagents for broadscale quantitative proteomics analyses

Affiliations

Catch-and-release reagents for broadscale quantitative proteomics analyses

Carlos A Gartner et al. J Proteome Res. 2007 Apr.

Abstract

The relative quantification of protein expression levels in different cell samples through the utilization of stable isotope dilution has become a standard method in the field of proteomics. We describe here the development of a new reductively cleavable reagent which facilitates the relative quantification of thousands of proteins from only tens of micrograms of starting protein. The ligand features a novel disulfide moiety that links biotin and a thiol-reactive entity. The disulfide is stable to reductive conditions employed during sample labeling but is readily cleaved under mild conditions using tris-(2-carboxyethyl) phosphine (TCEP). This unique chemical property allows for the facile use of immobilized avidin in a manner equivalent to the use of conventional reversible-binding affinity resins. Target peptides are bound to avidin resin, washed rigorously, then cleaved directly from the resin, resulting in simplified sample handling procedures and reduced nonspecific interactions. Here we demonstrate the stability of the linker under two different reducing conditions and show how this "catch-and-release (CAR)" reagent can be used to quantitatively compare protein abundances from two distinct cellular lysates. Starting with only 40 microg protein from each sample, 1840 individual proteins were identified in a single experiment. Using in-house software for automated peak integration, 1620 of these proteins were quantified for differential expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources