Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus
- PMID: 17311546
- PMCID: PMC2387116
- DOI: 10.2174/156720207779940653
Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus
Abstract
Diabetes mellitus (DM) affects approximately 170 million individuals worldwide and is expected to alter the lives of at least 366 million individuals within a future span of 25 years. Of even greater concern is the premise that these projections are underestimated since they assume obesity levels will remain constant. Type 1 insulin-dependent DM accounts for only 5-10 percent of all diabetics but represents a highly significant health concern, since this disorder begins early in life and leads to long-term complications. In contrast, Type 2 DM is recognized as the etiology of over 80 percent of all diabetics and is dramatically increasing in incidence as a result of changes in human behavior and increased body mass index. Yet, the pathological consequences of these disorders that involve the both the neuronal and vascular systems are intimately linked through the pathways that mediate oxidative stress. Here we highlight some of the relevant oxidative pathways that determine insulin resistance through reactive oxygen species, mitochondrial dysfunction, uncoupling proteins, and endoplasmic reticulum stress. These pathways are ultimately linked to protein kinase B (Akt) and the insulin signaling pathways that determine the initial onset of glucose intolerance and the subsequent course to apoptotic cell injury. Through the elucidation of these targets, improvement in current strategies as well as the development of future clinical applications can move forward for both the prevention and treatment of Type 1 and Type 2 DM.
Figures

Similar articles
-
Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy.J Diabetes Res. 2018 Feb 19;2018:9601801. doi: 10.1155/2018/9601801. eCollection 2018. J Diabetes Res. 2018. PMID: 29670917 Free PMC article. Review.
-
β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes.J Diabetes Investig. 2021 Sep;12(9):1526-1539. doi: 10.1111/jdi.13576. Epub 2021 Jun 16. J Diabetes Investig. 2021. PMID: 33993642 Free PMC article. Review.
-
Xenobiotic mediated diabetogenesis: Developmental exposure to dichlorvos or atrazine leads to type 1 or type 2 diabetes in Drosophila.Free Radic Biol Med. 2019 Sep;141:461-474. doi: 10.1016/j.freeradbiomed.2019.07.013. Epub 2019 Jul 15. Free Radic Biol Med. 2019. PMID: 31319158
-
Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes.Molecules. 2022 Jan 30;27(3):950. doi: 10.3390/molecules27030950. Molecules. 2022. PMID: 35164215 Free PMC article. Review.
-
MEDICAL BASIS OF DIABETIC NEUROPATHY FORMATION (REVIEW).Georgian Med News. 2018 Oct;(283):154-162. Georgian Med News. 2018. PMID: 30516514 Review.
Cited by
-
Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways.Oxid Med Cell Longev. 2010 Mar-Apr;3(2):153-65. doi: 10.4161/oxim.3.2.11758. Oxid Med Cell Longev. 2010. PMID: 20716939 Free PMC article.
-
Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements.Integr Med (Encinitas). 2014 Aug;13(4):35-43. Integr Med (Encinitas). 2014. PMID: 26770107 Free PMC article.
-
OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins.Trends Mol Med. 2008 May;14(5):219-27. doi: 10.1016/j.molmed.2008.03.002. Epub 2008 Apr 9. Trends Mol Med. 2008. PMID: 18403263 Free PMC article. Review.
-
Bile acid-induced elevated oxidative stress in the absence of farnesoid X receptor.Biol Pharm Bull. 2009 Feb;32(2):172-8. doi: 10.1248/bpb.32.172. Biol Pharm Bull. 2009. PMID: 19182371 Free PMC article.
-
Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia.Curr Neurovasc Res. 2011 Nov;8(4):270-85. doi: 10.2174/156720211798120990. Curr Neurovasc Res. 2011. PMID: 22023617 Free PMC article.
References
-
- Adams S, Green P, Claxton R, Simcox S, Williams MV, Walsh K, Leeuwenburgh C. Reactive carbonyl formation by oxidative and non-oxidative pathways. Front Biosci. 2001;6:A17–24. - PubMed
-
- Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26:1044–80. - PubMed
-
- Awata T, Kurihara S, Kikuchi C, Takei S, Inoue I, Ishii C, Takahashi K, Negishi K, Yoshida Y, Hagura R, Kanazawa Y, Katayama S. Evidence for association between the class I subset of the insulin gene minisatellite (IDDM2 locus) and IDDM in the Japanese population. Diabetes. 1997;46:1637–42. - PubMed
-
- Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med. 1990;322:1836–41. - PubMed
-
- Bernal-Mizrachi C, Weng S, Li B, Nolte LA, Feng C, Coleman T, Holloszy JO, Semenkovich CF. Respiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice. Arterioscler Thromb Vasc Biol. 2002;22:961–8. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical