Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;6(3):367-76.
doi: 10.4161/cbt.6.3.3704. Epub 2007 Mar 13.

Basic transcription factor 3 (BTF3) regulates transcription of tumor-associated genes in pancreatic cancer cells

Affiliations
Free article

Basic transcription factor 3 (BTF3) regulates transcription of tumor-associated genes in pancreatic cancer cells

Grace Kusumawidjaja et al. Cancer Biol Ther. 2007 Mar.
Free article

Abstract

Basic transcription factor 3 (BTF3) acts as a transcription factor and modulator of apoptosis, and is differentially expressed in colorectal cancer and glioblastomas. In the present study, the expression of BTF3, as well as its role in apoptosis and gene transcription, was analyzed in pancreatic ductal adenocarcinoma (PDAC). QRT-PCR, immunohistochemistry, immunoblotting, and immunofluorescence analyses were carried out to investigate BTF3 mRNA/protein expression and localization. BTF3 silencing in pancreatic cancer cells was performed using specific siRNA molecules. Functional analyses were carried out using cell growth assays, apoptosis assays, and DNA array analysis. BTF3 and BTF3a exhibited 1.3-fold and 4.6-fold increased median mRNA levels in PDAC tissues, compared to normal pancreatic tissues. BTF3 localized mainly in the cytoplasm and nuclei of tubular complexes and pancreatic cancer cells. Pancreatic cancer cell lines expressed the mRNA and protein of BTF3a (27 kDa) and BTF3b (22 kDa) isoforms. BTF3 silencing using specific siRNA molecules did not influence apoptosis induced by chemotherapy or radiotherapy. In contrast, BTF3 silencing resulted in down-regulation of several cancer-associated genes, including EPHB2, ABL2, HPSE2 and ATM, and up-regulation of KRAG, RRAS2, NFkappa-B, MRVI1, MADCAM1 and others. In conclusion, BTF3 is overexpressed in PDAC, where it acts as a transcriptional regulator rather than a direct modulator of apoptosis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources