Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations
- PMID: 17313703
- PMCID: PMC2211514
- DOI: 10.1017/S0007114507352392
Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations
Abstract
Epidemiological studies and experimental models show that maternal nutritional constraint during pregnancy alters the metabolic phenotype of the offspring and that this can be passed to subsequent generations. In the rat, induction of an altered metabolic phenotype in the liver of the F1 generation by feeding a protein-restricted diet (PRD) during pregnancy involves the altered methylation of specific gene promoters. We therefore investigated whether the altered methylation of PPARalpha and glucocorticoid receptor (GR) promoters was passed to the F2 generation. Females rats (F0) were fed a reference diet (180 g/kg protein) or PRD (90 g/kg protein) throughout gestation, and AIN-76A during lactation. The F1 offspring were weaned onto AIN-76A. F1 females were mated and fed AIN-76A throughout pregnancy and lactation. F1 and F2 males were killed on postnatal day 80. Hepatic PPARalpha and GR promoter methylation was significantly (P<0 x 05) lower in the PRD group in the F1 (PPARalpha 8 %, GR 10 %) and F2 (PPARalpha 11 %, GR 8 %) generations. There were trends (P<0 x 1) towards a higher expression of PPARalpha, GR, acyl-CoA oxidase and phosphoenolpyruvate carboxykinase (PEPCK) in the F1 and F2 males, although this was significant only for PEPCK. These data show for the first time that the altered methylation of gene promoters induced in the F1 generation by maternal protein restriction during pregnancy is transmitted to the F2 generation. This may represent a mechanism for the transmission of induced phenotypes between generations
Figures
References
-
- Arnaud P, Feil R. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Res (Part C) 2005;75:81–97. - PubMed
-
- Benyshek DC, Johnston CS, Martin JF. Glucose metabolism is altered in the adequately-nourished grand-offspring (F(3) generation) of rats malnourished during gestation and perinatal life. Diabetologia. 2006;49:1117–1119. - PubMed
-
- Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. - PubMed
-
- Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000;25:169–193. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
