Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 1;82(3):618-29.
doi: 10.1002/jbm.a.31177.

Porous morphology, porosity, mechanical properties of poly(alpha-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition

Affiliations

Porous morphology, porosity, mechanical properties of poly(alpha-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition

Li Liu et al. J Biomed Mater Res A. .

Abstract

Tissue engineering is expected to construct complicated hominine organs composed of many different types of cells. One of the key points is the accurate controlling of scaffold material and porous morphology point by point. A new direct rapid prototyping process called low-temperature deposition manufacturing (LDM) was proposed to fabricate scaffolds. The new process integrated extrusion/jetting and phase separation and therefore could fabricate scaffolds with hierarchical porous structures creating a wonderful environment for the growth of new tissue. The interconnected computer-designed macropores allow cells in the new tissue to grow throughout the scaffold. Also, the parameter-controlled micropores let nutrition in and metabolic wastes out. The macrocellular morphology, microcellular morphology, porosity, and mechanical properties of the poly(alpha-hydroxy acid)-TCP composite scaffolds prepared by the proposed method are investigated. These scaffolds with high controllability would potentially play an important role in tissue engineering. LDM could also be combined with multinozzle deposition or cell deposition to exactly control materials or cells point by point. This might bring a breakthrough to the engineered fabrication of complicated organs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources