Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;9(1):204.
doi: 10.1186/ar2116.

Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

Affiliations
Review

Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

Catherine M Kolf et al. Arthritis Res Ther. 2007.

Abstract

Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Mesenchymal stem cell self-renewal and cytodifferentiation. Extracellular signaling factors, including growth factors and cytokines, demonstrated to promote and/or maintain mesenchymal stem cell (MSC) self-renewal, in vitro. Gene markers characteristic of MSC self-renewal include oct-4, sox-2, and rex-1. LIF, leukemia inhibitory factor; EGF, epidermal growth factor; HGF, hepatocyte growth factor; PDGF, platelet-derived growth factor; FGF, fibroblast growth factor; CFU-F, colony forming unit-fibroblast; c, chondroblast; o, osteoblast; a, adipoblast; m, myoblast; cm, cardio-myoblast; t, tenoblast.
Figure 2
Figure 2
Molecular regulation of mesenchymal stem cell cytodifferentiation programs. Extracellular molecular signaling and mechanical inducers of differentiation transduce effects through putative receptors, channels, and/or other cell-surface-associated mechanisms. Downstream crosstalk of signaling pathways, including that between distinct mitogen-activated protein kinases (MAPKs) and R-Smads, provides a level of specificity that gives rise to unique lineages, such as chondrocytes and osteoblasts. Specificity of lineage differentiation can also result from the recruitment of master transcriptional switches with binary regulation of cell fate, such as TAZ (transcriptional coactivator with PDZ-binding motif). Depending on potentially unique multiprotein complexes that it may form in response to specific upstream signaling, TAZ promotes osteogenesis and inhibits adipogenesis. Furthermore, coregulator subtypes can be invoked, such as tension-induced/-inhibited proteins (TIPs), which regulate adipogenesis and myogenesis. Specific molecular induction/regulation of cardiomyogenic and tenogenic-specific development are as yet largely unknown, with the exception of those depicted. Broken lines, unknown or putative; solid lines, as in published data; *, juxtaposing cell; GDF, growth and differentiation factor; TGF, transforming growth factor; BMP, bone morphogenetic protein; FA, fatty acid; βcat, β-catenin; PPAR, peroxisome proliferator-activated receptor; MSK, mitogen- and stress-activated protein kinase; PCAF, p300/CBP-associated factor; Ac, acetyl; c, chondroblast; o, osteoblast; a, adipoblast; m, myoblast; cm, cardiomyoblast; t, tenoblast.
Figure 3
Figure 3
Mesenchymal stem cell niche. Mesenchymal stem cells (MSCs) are shown in their putative perivascular niche (BV, blood vessel), interacting with (1) various other differentiated cells (DC1, DC2, etc.) by means of cell-adhesion molecules, such as cadherins, (2) extracellular matrix (ECM) deposited by the niche cells mediated by integrin receptors, and (3) signaling molecules, which may include autocrine, paracrine, and endocrine factors. Another variable is O2 tension, with hypoxia associated with MSCs in the bone marrow niche.

Similar articles

Cited by

References

    1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403. - PubMed
    1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. - DOI - PubMed
    1. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–49. doi: 10.1038/nature00870. - DOI - PubMed
    1. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62. - PubMed
    1. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003;116:1827–1835. doi: 10.1242/jcs.00369. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources