Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;35(7):e47.
doi: 10.1093/nar/gkm078. Epub 2007 Feb 22.

Multiplex amplification of all coding sequences within 10 cancer genes by Gene-Collector

Affiliations

Multiplex amplification of all coding sequences within 10 cancer genes by Gene-Collector

Simon Fredriksson et al. Nucleic Acids Res. 2007.

Abstract

Herein we present Gene-Collector, a method for multiplex amplification of nucleic acids. The procedure has been employed to successfully amplify the coding sequence of 10 human cancer genes in one assay with uniform abundance of the final products. Amplification is initiated by a multiplex PCR in this case with 170 primer pairs. Each PCR product is then specifically circularized by ligation on a Collector probe capable of juxtapositioning only the perfectly matched cognate primer pairs. Any amplification artifacts typically associated with multiplex PCR derived from the use of many primer pairs such as false amplicons, primer-dimers etc. are not circularized and degraded by exonuclease treatment. Circular DNA molecules are then further enriched by randomly primed rolling circle replication. Amplification was successful for 90% of the targeted amplicons as seen by hybridization to a custom resequencing DNA micro-array. Real-time quantitative PCR revealed that 96% of the amplification products were all within 4-fold of the average abundance. Gene-Collector has utility for numerous applications such as high throughput resequencing, SNP analyses, and pathogen detection.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Principles of Gene-Collector. (A) A multiplex PCR is carried out using target specific primer pairs, generating both correct and incorrect products. For clarity, only three of the 170 primer pairs are shown and are color coded. (B) Guided by the collector probe, targets that contain matched primer pairs are circularized, leaving non-cognate products linear and thus susceptible to exonuclease degradation. In detail, (I) a collector probe contains complementary sequences to a cognate primer pair (orange). (II) The collector probe and the DNA ligase enable circularization of correctly amplified targets. (C) A universal amplification is then carried out using a randomly primed rolling circle amplification, generating a final product of concatemers of correct target sequences.
Figure 2.
Figure 2.
Evenness measurements of the various stages of the Gene-Collector process assessed by quantitative PCR. A subset of 48 targets, all successfully amplified according to the resequencing array, was chosen to represent the overall variation in amplification efficiency. The starting material of human genomic DNA, assumed to be perfectly uniform, is compared to the evenness after the multiplex PCR, the ligation and exonuclease treatment and finally the rolling circle amplified material. The Y-axis represents a log-scale with deviations from 1 being relative differences from the average abundance. No compensation for differences in real-time PCR efficiency between reactions was used. However, the genomic DNA starting material represents a measure of this variation and the general imprecision of the real-time PCRs. Here, 96% of the final amplicons analyzed was no less than one-fourth of the average abundance.

References

    1. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, et al. Accessing genetic information with high-density DNA arrays. Science. 1996;274:610–614. - PubMed
    1. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science. 2001;294:1719–1723. - PubMed
    1. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–380. - PMC - PubMed
    1. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005 1117389. - PubMed
    1. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988;16:11141–11156. - PMC - PubMed

Publication types