The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formation
- PMID: 17317745
- PMCID: PMC2075219
- DOI: 10.1113/jphysiol.2006.127472
The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formation
Abstract
Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma-soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT-C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I.
Figures








Similar articles
-
Synaptotagmin I stabilizes synaptic vesicles via its C(2)A polylysine motif.Genesis. 2009 May;47(5):337-45. doi: 10.1002/dvg.20502. Genesis. 2009. PMID: 19358157
-
Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions.J Comp Neurol. 2001 Jul 16;436(1):4-16. J Comp Neurol. 2001. PMID: 11413542
-
Drosophila synaptotagmin I null mutants show severe alterations in vesicle populations but calcium-binding motif mutants do not.J Comp Neurol. 2006 May 1;496(1):1-12. doi: 10.1002/cne.20868. J Comp Neurol. 2006. PMID: 16528727
-
Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission.J Neurochem. 2013 Jul;126(2):146-54. doi: 10.1111/jnc.12245. Epub 2013 Apr 23. J Neurochem. 2013. PMID: 23517499 Review.
-
BCL-xL regulates synaptic plasticity.Mol Interv. 2006 Aug;6(4):208-22. doi: 10.1124/mi.6.4.7. Mol Interv. 2006. PMID: 16960143 Review.
Cited by
-
Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I.J Physiol. 2009 Jul 1;587(Pt 13):3221-31. doi: 10.1113/jphysiol.2009.173088. Epub 2009 May 18. J Physiol. 2009. PMID: 19451201 Free PMC article.
-
Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis.BMC Genomics. 2009 Sep 23;10:451. doi: 10.1186/1471-2164-10-451. BMC Genomics. 2009. PMID: 19775440 Free PMC article.
-
Electroporation of the hindbrain to trace axonal trajectories and synaptic targets in the chick embryo.J Vis Exp. 2013 May 29;(75):e50136. doi: 10.3791/50136. J Vis Exp. 2013. PMID: 23748440 Free PMC article.
-
Caltubin, a novel molluscan tubulin-interacting protein, promotes axonal growth and attenuates axonal degeneration of rodent neurons.J Neurosci. 2011 Oct 26;31(43):15231-44. doi: 10.1523/JNEUROSCI.2516-11.2011. J Neurosci. 2011. PMID: 22031869 Free PMC article.
-
Control of axon guidance and neurotransmitter phenotype of dB1 hindbrain interneurons by Lim-HD code.J Neurosci. 2015 Feb 11;35(6):2596-611. doi: 10.1523/JNEUROSCI.2699-14.2015. J Neurosci. 2015. PMID: 25673852 Free PMC article.
References
-
- Ahmari SE, Buchanan J, Smith SJ. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci. 2000;3:445–451. - PubMed
-
- Antz C, Geyer M, Fakler B, Schott MK, Guy HR, Frank R, Ruppersberg JP, Kalbitzer HR. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature. 1997;385:272–275. - PubMed
-
- Atwood HL, Karunanithi S. Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci. 2002;3:497–516. - PubMed
-
- Augustine GJ. How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 2001;11:320–326. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous