Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb 27;83(4):448-57.
doi: 10.1097/01.tp.0000251373.17997.9a.

Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers

Affiliations

Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers

Valeria Mas et al. Transplantation. .

Abstract

Background: Chronic allograft nephropathy (CAN) is a cause of graft loss. The multistage processes that result in CAN are poorly understood. Noninvasive assays for detecting allograft dysfunction and predicting long-term outcomes are a priority in transplantation (Tx).

Methods: Renal tissue from kidney transplant patients (KTP) with CAN (n=11) and normal kidneys (NK; n=7) were studied using microarrays. Markers resulting from the microarray analysis (transforming growth factor [TGF]-beta, epidermal growth factor receptor [EGFR], angiotensinogen [AGT]) were tested in urine (Ur) and peripheral blood (PB) samples from the CAN patients (collected at the biopsy time) using reverse-transcriptase real-time polymerase chain reaction. Ur and PB samples from long-term KTP with stable renal function (SRF; n=20) were used as control.

Results: Assuming unequal variances between CAN and NK, using a false discovery rate of 0.005, and running 1,000 of all possible permutations, 728 probe sets were differentially expressed. Genes related to fibrosis and extracellular matrix deposition (i.e., TGF-beta, laminin, gamma 2, metalloproteinases-9, and collagen type IX alpha 3) were up-regulated. Genes related to immunoglobulins, B cells, T-cell receptor, nuclear factor of activated T cells, and cytokine and chemokines receptors were also upregulated. EGFR and growth factor receptor activity (FGFR)2 were downregulated in CAN samples. AGT, EGFR, and TGF-beta levels were statistical different in urine but not in blood samples of CAN patients when compared to KTP with SRF (P<0.001, P=0.04, and P<0.001, respectively).

Conclusions: Genes related to fibrosis, extracellular matrix deposition, and immune response were found up-regulated in CAN. Markers resulting from the microarray analysis were differentially expressed in Ur samples of the CAN patients and in concordance with the microarray profiles.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms