Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jul;114(7):899-908.
doi: 10.1007/s00702-007-0628-5. Epub 2007 Feb 22.

Assessment of NMDA receptor activation in vivo by Fos induction after challenge with the direct NMDA agonist (tetrazol-5-yl)glycine: effects of clozapine and haloperidol

Affiliations
Comparative Study

Assessment of NMDA receptor activation in vivo by Fos induction after challenge with the direct NMDA agonist (tetrazol-5-yl)glycine: effects of clozapine and haloperidol

K Inada et al. J Neural Transm (Vienna). 2007 Jul.

Abstract

Induction of Fos protein by the potent and direct NMDA agonist (tetrazol-5-yl)glycine (TZG) was examined in mice. Effects of antipsychotic drugs were assessed on this in vivo index of NMDA receptor activation. TZG induced the expression of Fos in a neuroanatomically selective manner, with the hippocampal formation showing the most robust response. In mice genetically altered to express low levels of the NR1 subunit of the NMDA receptor, TZG-induced Fos was reduced markedly in comparison to the wild type controls. TZG-induced Fos was also blocked by the selective NMDA antagonist MK-801. Pretreatment of mice with clozapine (3 and 10 mg/kg) reduced TZG-induced Fos in the hippocampal formation but not in other brain regions. Haloperidol at a dose of 0.5 mg/kg did not antagonize TZG induced Fos in any region. Haloperidol at a dose of 1.0 mg/kg did attenuate the induction of Fos by TZG in the hippocampus but not in other brain regions. The relatively high dose (1 mg/kg) of haloperidol required to block effects of TZG suggests that this action may not be related to the D(2) dopamine receptor-blocking properties, since maximal D(2) receptor blockade was probably achieved by the 0.5 mg/kg dose of haloperidol. The antidepressant drug imipramine (10 or 20 mg/kg) did not antagonize TZG induced Fos in any brain region. The data suggest that clozapine can reduce excessive activation of NMDA receptors by TZG administration in vivo at doses relevant to the drugs' actions in rodent models of antipsychotic activity. Whether or not this action of clozapine contributes to its therapeutic properties will require further study.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brain Res. 1998 Nov 23;812(1-2):65-75 - PubMed
    1. J Neurosci. 1993 Sep;13(9):3932-43 - PubMed
    1. Mol Psychiatry. 2002;7(1):32-43 - PubMed
    1. J Pharmacol Exp Ther. 2000 Apr;293(1):8-14 - PubMed
    1. Cell. 1999 Aug 20;98(4):427-36 - PubMed

Publication types

MeSH terms

LinkOut - more resources