Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 21;129(11):3099-103.
doi: 10.1021/ja062359e. Epub 2007 Feb 24.

Realistic modeling of ruthenium-catalyzed transfer hydrogenation

Affiliations

Realistic modeling of ruthenium-catalyzed transfer hydrogenation

Jan-Willem Handgraaf et al. J Am Chem Soc. .

Abstract

We report the first computational study of a fully atomistic model of the ruthenium-catalyzed transfer hydrogenation of formaldehyde and the reverse reaction in an explicit methanol solution. Using ab initio molecular dynamics techniques, we determined the thermodynamics, mechanism, and electronic structure along the reaction path. To assess the effect of the solvent quantitatively, we make a direct comparison with the gas-phase reaction. We find that the energy profile in solution bears little resemblance to the profile in the gas phase and a distinct solvation barrier is found: the activation barriers in both directions are lowered and the concerted hydride and proton transfer in the gas phase are converted into a sequential mechanism in solution with the substrate appearing as methoxide-like intermediate. Our results indicate that besides the metal-ligand bifunctional mechanism, as proposed by Noyori, also a concerted solvent-mediated mechanism is feasible. Our study gives a new perspective of the active role a solvent can have in transition-metal-catalyzed reactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources