Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 1;41(2):132-40.
doi: 10.1016/j.ijbiomac.2007.01.006. Epub 2007 Jan 21.

Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization

Affiliations

Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization

Rodrigo G Stábeli et al. Int J Biol Macromol. .

Abstract

An L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) was purified to a high degree using sequential CM-Sepharose ion-exchange and phenyl-Sepharose chromatography. When analyzed by mass spectrometry, the purified BmooLAAO-I presented a molecular weight of 64,889 and 130,779 under denaturing and nondenaturing conditions, respectively. BmooLAAO-I is a homodimeric acidic glycoprotein with a pI approximately 4.7, and the N-terminal sequence shows close structural similarity to other snake venom LAAOs. This enzyme was inactivated by freezing or low pH, and secondary structural analysis by circular dichroism revealed 48% alpha-helix, 20% beta-sheet, 12% beta-turn, and 20% random coil structures. BmooLAAO-I exhibited bactericidal, antitumoral, trypanocidal, edematogenic, and platelet-aggregating activities. All of these effects were inhibited by catalase, suggesting that these biological effects are mediated by the production of H(2)O(2). BmooLAAO-I induced typical apoptotic DNA fragmentation in HL-60 cells, which was also inhibited by catalase. These results point to the potential use of BmooLAAO-I as a therapeutic agent for treatment of diseases in which induction of H(2)O(2) production can be beneficial.

PubMed Disclaimer

Publication types

LinkOut - more resources