Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 15;175(10):1014-26.
doi: 10.1164/rccm.200609-1370OC. Epub 2007 Feb 22.

Cell-based angiopoietin-1 gene therapy for acute lung injury

Affiliations

Cell-based angiopoietin-1 gene therapy for acute lung injury

Sarah D McCarter et al. Am J Respir Crit Care Med. .

Abstract

Rationale: The acute respiratory distress syndrome is a significant cause of morbidity and mortality in critically ill patients. Angiopoietin-1 (Ang-1), a ligand for the endothelial Tie2 receptor, is an endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions.

Objectives: We hypothesized that Ang-1 counteracts vascular inflammation and pulmonary vascular leak in experimental acute lung injury.

Methods: We used cell-based gene therapy in a rat model of ALI. Transgenic mice overexpressing Ang-1 or deficient in the Tie2 receptor were also studied to better elucidate the mechanisms of protection.

Measurements and main results: The present report provides data that support a strong protective role for the Ang-1/Tie2 system in two experimental models of LPS-induced acute lung injury. In a rat model, cell-based Ang-1 gene transfer improved morphological, biochemical, and molecular indices of lung injury and inflammation. These findings were confirmed in a gain-of-function conditional, targeted transgenic mouse model, in which Ang-1 reduced endothelial cell activation and the expression of adhesion molecules, associated with a marked improvement in airspace inflammation and intraalveolar septal thickening. Moreover, heterozygous Tie2-deficient mice demonstrated enhanced evidence of lung injury and increased early mortality.

Conclusions: These results support a critical role for the Ang-1/Tie2 axis in modulating the pulmonary vascular response to lung injury and suggest that Ang-1 therapy may represent a potential new strategy for the treatment and/or prevention of acute respiratory distress syndrome in critically ill patients.

PubMed Disclaimer

Publication types

LinkOut - more resources