Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb;174(3):867-72.
doi: 10.1128/jb.174.3.867-872.1992.

The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli

Affiliations

The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli

M Dubourdieu et al. J Bacteriol. 1992 Feb.

Abstract

Respiratory nitrate reductase purified from the cell membrane of Escherichia coli is composed of three subunits, alpha, beta, and gamma, which are encoded, respectively, by the narG, narH, and narI genes of the narGHJI operon. The product of the narJ gene was deduced previously to be a highly charged, acidic protein which was not found to be associated with any of the purified preparations of the enzyme and which, in studies with putative narJ mutants, did not appear to be absolutely required for formation of the membrane-bound enzyme. To test this latter hypothesis, the narJ gene was disrupted in a plasmid which contained the complete narGHJI operon, and the operon was expressed in a narG::Tn10 insertion mutant. The chromosomal copy of the narJ gene of a wild-type strain was also replaced by the disrupted narJ gene. In both cases, when nar operon expression was induced, the alpha and beta subunits accumulated in a form which expressed only very low activity with either reduced methyl viologen (MVH) or formate as electron donors, although an alpha-beta complex separated from the gamma subunit is known to catalyze full MVH-linked activity but not the formate-linked activity associated with the membrane-bound complex. The low-activity forms of the alpha and beta subunits also accumulated in the absence of the NarJ protein when the gamma subunit (NarI) was provided from a multicopy plasmid, indicating that NarJ is essential for the formation of the active, membrane-bound complex. When both NarJ and NarI were provided from a plasmid in the narJ mutant, fully active, membrane-bound activity was formed. When NarJ only was provided from a plasmid in the narJ mutant, a cytosolic form of the alpha and beta subunits, which expressed significantly increased levels of the MVH-dependent activity, accumulated, and the alpha subunit appeared to be protected from the proteolytic clipping which occurred in the absence of NarJ. We conclude that NarJ is indispensible for the biogenesis of membrane-bound nitrate reductase and is involved either in the maturation of a soluble, active alpha-beta complex or in facilitating the interaction of the complex with the membrane-bound gamma subunit.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Arch Biochem Biophys. 1981 Jan;206(1):54-64 - PubMed
    1. Mol Microbiol. 1987 Sep;1(2):143-50 - PubMed
    1. Methods Enzymol. 1987;153:3-11 - PubMed
    1. Methods Enzymol. 1986;134:467-72 - PubMed
    1. Biochemistry. 1985 Jan 1;24(1):40-6 - PubMed

Publication types

LinkOut - more resources