Effects of Toxoplasma gondii infection on the brain
- PMID: 17322557
- PMCID: PMC2526127
- DOI: 10.1093/schbul/sbm008
Effects of Toxoplasma gondii infection on the brain
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, can infect humans in 3 different ways: ingestion of tissue cysts, ingestion of oocysts, or congenital infection with tachyzoites. After proliferation of tachyzoites in various organs during the acute stage, the parasite forms cysts preferentially in the brain and establishes a chronic infection, which is a balance between host immunity and the parasite's evasion of the immune response. A variety of brain cells, including astrocytes and neurons, can be infected. In vitro studies using non-brain cells have demonstrated profound effects of the infection on gene expression of host cells, including molecules that promote the immune response and those involved in signal transduction pathways, suggesting that similar effects could occur in infected brain cells. Interferon-gamma is the essential mediator of the immune response to control T. gondii in the brain and to maintain the latency of chronic infection. Infection also induces the production of a variety of cytokines by microglia, astrocytes, and neurons, which promote or suppress inflammatory responses. The strain (genotype) of T. gondii, genetic factors of the host, and probably the route of infection and the stage (tachyzoite, cyst, or oocyst) of the parasite initiating infection all contribute to the establishment of a balance between the host and the parasite and affect the outcome of the infection.
References
-
- Da Gama LM, Ribeiro-Gomes FL, Guimaraes U, Jr, Arnholdt AC. Reduction in adhesiveness to extracellular matrix components, modulation of adhesion molecules and in vivo migration of murine macrophages infected with Toxoplasma gondii. Microbes Infect. 2004;6:1287–1296. - PubMed
-
- Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol. 2006;8:1611–1623. - PubMed
-
- Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK. Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin Immunol Immunopathol. 1993;67:178–183. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
