Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 29;338(1-2):110-8.
doi: 10.1016/j.ijpharm.2007.01.035. Epub 2007 Jan 28.

Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties

Affiliations

Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties

Michael G Herting et al. Int J Pharm. .

Abstract

The influence of particle size of MCC, as a binder, and theophylline, as an active pharmaceutical ingredient on the process of roll compaction/dry granulation was investigated using a D-optimal design of experiments. Examined parameters were particle size of both starting materials, fraction of theophylline and ribbon porosity. Therefore, different binary mixtures were roll compacted, dry granulated and compressed into tablets. Flowability of powders and granules and tensile strength of tablets made from powders or granules were the focus of this study. This study showed that a decrease in particle size of MCC or theophylline resulted in an increase of tensile strength even after roll compaction/dry granulation. Comparing tensile strength of tablets made from powder using large size MCC with ones made from granules with small sized MCC revealed that the tensile strength of tablets produced from granules was equal or even higher than tensile strength from direct compressed tablets. Furthermore, using small sized MCC instead of large sized MCC led to larger granules with better flowability. It is shown that the fraction of binder can be reduced without a loss of tensile strength of the final tablets by size reduction of MCC.

PubMed Disclaimer

Comment in

Similar articles

Cited by

LinkOut - more resources