Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar 26;96(6):857-63.
doi: 10.1038/sj.bjc.6603665. Epub 2007 Feb 27.

Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer?

Affiliations
Review

Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer?

H Uramoto et al. Br J Cancer. .

Abstract

Subsets of patients with non-small cell lung cancer respond remarkably well to small molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptor (EGFR) such as gefitinib or erlotinib. In 2004, it was found that EGFR mutations occurring in the kinase domain are strongly associated with EGFR-TKI sensitivity. However, subsequent studies revealed that this relationship was not perfect and various predictive markers have been reported. These include EGFR gene copy numbers, status of ligands for EGFR, changes in other HER family genes or molecules downstream to EGFR including KRAS or AKT. In this review, we would like to review current knowledge of predictive factors for EGFR-TKI. As all but one phase III trials failed to show a survival advantage of the treatment arm involving EGFR-TKIs, it is necessary to select patients by these biomarkers in future clinical trials. Through these efforts, it would be possible to individualise EGFR-TKI treatment for patients suffering from lung cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Potential molecular biomarkers to predict responsiveness for EGFR-TKI in EGFR signalling pathways. Sensitive and resistant markers are indicated by grey and black boxes, respectively.

References

    1. Ando M, Okamoto I, Yamamoto N, Takeda K, Tamura K, Seto T, Ariyoshi Y, Fukuoka M (2006) Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 24: 2549–2556 - PubMed
    1. Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW, Sgroi DC, Muir B, Riemenschneider MJ, Iacona RB, Krebs AD, Johnson DH, Giaccone G, Herbst RS, Manegold C, Fukuoka M, Kris MG, Baselga J, Ochs JS, Haber DA (2005) Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 23: 8081–8092 - PubMed
    1. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Dogilioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn Jr PA, Varella-Garcia M (2005a. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small cell lung cancer. J Natl Cancer Inst 97: 643–655 - PubMed
    1. Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, Gregorc V, Ligorio C, Cancellieri A, Damiani S, Spreafico A, Paties CT, Lombardo L, Calandri C, Bellezza G, Tonato M, Crino L (2004) Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 96: 1133–1141 - PubMed
    1. Cappuzzo F, Toschi L, Domenichini I, Bartolini S, Ceresoli GL, Rossi E, Ludovini V, Cancellieri A, Magrini E, Bemis L, Franklin WA, Crino L, Bunn PA, Jr, Hirsch FR, Varella-Garcia M (2005b) HER3 genomic gain and sensitivity to gefitinib in advanced non-small-cell lung cancer patients. Br J Cancer 93: 1334–1340 - PMC - PubMed

Publication types

MeSH terms