Division site recognition in Escherichia coli and Bacillus subtilis
- PMID: 17326815
- DOI: 10.1111/j.1574-6976.2007.00067.x
Division site recognition in Escherichia coli and Bacillus subtilis
Abstract
The process of cell division has been intensively studied at the molecular level for decades but some basic questions remain unanswered. The mechanisms of cell division are probably best characterized in the rod-shaped bacteria Escherichia coli and Bacillus subtilis. Many of the key players are known, but detailed descriptions of the molecular mechanisms which determine where, how and when cells form the division septum are lacking. Different models have been proposed to account for the high precision with which the septum is constructed at the midcell and these models have been evaluated and refined against new data emerging from the fast improving methodologies of cell biology. This review summarizes important advances in our understanding of how the cell positions the division septum, whether it be vegetative or asymmetric. It also describes how the asymmetric septum forms and how this septation event is linked to chromosome segregation and subsequent asymmetric gene expression during spore formation in B. subtilis.
Similar articles
-
Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis.Mol Microbiol. 2005 Jan;55(2):349-67. doi: 10.1111/j.1365-2958.2004.04399.x. Mol Microbiol. 2005. PMID: 15659156
-
Where asymmetry in gene expression originates.Mol Microbiol. 2005 Aug;57(3):611-20. doi: 10.1111/j.1365-2958.2005.04687.x. Mol Microbiol. 2005. PMID: 16045607 Review.
-
Spatial control of bacterial division-site placement.Nat Rev Microbiol. 2005 Dec;3(12):959-68. doi: 10.1038/nrmicro1290. Nat Rev Microbiol. 2005. PMID: 16322744 Review.
-
The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events.Mol Microbiol. 2004 Oct;54(2):452-63. doi: 10.1111/j.1365-2958.2004.04267.x. Mol Microbiol. 2004. PMID: 15469516
-
Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis.Cell. 2004 Jun 25;117(7):915-25. doi: 10.1016/j.cell.2004.06.002. Cell. 2004. PMID: 15210112
Cited by
-
Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough.Front Microbiol. 2015 Dec 8;6:1378. doi: 10.3389/fmicb.2015.01378. eCollection 2015. Front Microbiol. 2015. PMID: 26696987 Free PMC article.
-
Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis.Mol Microbiol. 2010 Nov;78(4):866-82. doi: 10.1111/j.1365-2958.2010.07369.x. Epub 2010 Sep 23. Mol Microbiol. 2010. PMID: 20807205 Free PMC article.
-
DivIC stabilizes FtsL against RasP cleavage.J Bacteriol. 2010 Oct;192(19):5260-3. doi: 10.1128/JB.00287-10. Epub 2010 Jul 19. J Bacteriol. 2010. PMID: 20644139 Free PMC article.
-
Open questions about the function and evolution of bacterial Min systems.Front Microbiol. 2013 Dec 9;4:378. doi: 10.3389/fmicb.2013.00378. eCollection 2013. Front Microbiol. 2013. PMID: 24367361 Free PMC article. No abstract available.
-
The putative hydrolase YycJ (WalJ) affects the coordination of cell division with DNA replication in Bacillus subtilis and may play a conserved role in cell wall metabolism.J Bacteriol. 2011 Feb;193(4):896-908. doi: 10.1128/JB.00594-10. Epub 2010 Dec 17. J Bacteriol. 2011. PMID: 21169496 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases