Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;30(1):109-13.
doi: 10.1007/BF02977786.

Inhibitory effects of (1R,9S)-beta-Hydrastine on calcium transport in PC12 cells

Affiliations

Inhibitory effects of (1R,9S)-beta-Hydrastine on calcium transport in PC12 cells

Shou Yu Yin et al. Arch Pharm Res. 2007 Jan.

Abstract

(1R,9S)-beta-Hydrastine (BHS), at 100 microM, has been shown to mainly reduce the K+-induced dopamine release and Ca2+ influx by blocking the L-type Ca2+ channel and inhibit the caffeine activated store-operated Ca2+ channels, but not those activated by thapsigargin, in PC12 cells. In this study, the effects of BHS on Ca2+ transport from Ca2+ stores in the absence of external Ca2+ were investigated in PC12 cells. BHS decreased the basal intracellular Ca2+ concentration ([Ca2+]i) in the absence of external Ca2+ in PC12 cells. In the absence of external Ca2+, pretreating PC12 cells with 100 microM BHS reduced the rapid increase in the [Ca2+]i elicited by 20 mM caffeine, but not that by 1 microM thapsigargin. In addition, BHS inhibited the increase in the [Ca2+]i elicited by restoration of 2 mM CaCl2 after the Ca2+ stores had been depleted by 20 mM caffeine, but not those depleted by 1 microM thapsigargin, in the absence of external Ca2+. These results suggested that BHS mainly inhibited Ca2+ leakage from the Ca2+ stores and the caffeine-stimulated release of Ca2+ from the caffeine-sensitive Ca2+ stores in PC12 cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources