Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Feb;54(2):251-70.
doi: 10.1109/tuffc.2007.240.

MEMS technology for timing and frequency control

Affiliations
Free article
Review

MEMS technology for timing and frequency control

Clark T C Nguyen. IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb.
Free article

Abstract

An overview on the use of microelectromechanical systems (MEMS) technologies for timing and frequency control is presented. In particular, micromechanical RF filters and reference oscillators based on recently demonstrated vibrating on-chip micromechanical resonators with Q's > 10,000 at 1.5 GHz are described as an attractive solution to the increasing count of RF components (e.g., filters) expected to be needed by future multiband, multimode wireless devices. With Q's this high in on-chip abundance, such devices might also enable a paradigm shift in the design of timing and frequency control functions, where the advantages of high-Q are emphasized, rather than suppressed (e.g., due to size and cost reasons), resulting in enhanced robustness and power savings. Indeed, as vibrating RF MEMS devices are perceived more as circuit building blocks than as stand-alone devices, and as the frequency processing circuits they enable become larger and more complex, the makings of an integrated micromechanical circuit technology begin to take shape, perhaps with a functional breadth not unlike that of integrated transistor circuits. With even more aggressive three-dimensional MEMS technologies, even higher on-chip Q's are possible, such as already achieved via chip-scale atomic physics packages, which so far have achieved Q's > 10(7) using atomic cells measuring only 10 mm3 in volume and consuming just 5 mW of power, all while still allowing atomic clock Allan deviations down to 10(-11) at one hour.

PubMed Disclaimer

Similar articles

Cited by

Publication types