Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Mar;59(1):40-53.
doi: 10.1124/pr.59.1.1.

Biomarkers in the prevention and treatment of atherosclerosis: need, validation, and future

Affiliations
Review

Biomarkers in the prevention and treatment of atherosclerosis: need, validation, and future

James H Revkin et al. Pharmacol Rev. 2007 Mar.

Abstract

Cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in the developed world, and there is a clear need to develop novel therapeutic strategies to reduce cardiovascular risk further than is currently possible. Traditionally, the effectiveness of new cardiovascular drugs has been evaluated in clinical trials using cardiovascular outcomes as endpoints. However, such trials require large numbers of patients followed over long periods of time. Clinical trials using surrogate markers for CVD may be shorter in duration and involve fewer participants. Measurement of atherosclerotic progression is an ideal surrogate marker as it is predictive of future cardiovascular events. The "gold standard" for detecting and defining the severity, extent, and rate of atherosclerotic progression has been quantitative coronary angiography. However, this technique has fundamental limitations. More recently, measurement of carotid intima-media thickness using B-mode ultrasound and measurement of atheroma volume using intravascular ultrasound have emerged as more accurate techniques for detecting atherosclerotic progression. Both of these techniques have potential utility as surrogate endpoints in place of cardiovascular outcomes in clinical trials. Their use might facilitate the more rapid development of novel, safe, and effective therapies.

PubMed Disclaimer

MeSH terms