Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;6(2):133-40.
doi: 10.3171/spi.2007.6.2.133.

Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury

Affiliations

Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury

Eric M Horn et al. J Neurosurg Spine. 2007 Feb.

Abstract

Object: Therapies that use bioactive materials as replacement extracellular matrices may hold the potential to mitigate the inhibition of regeneration observed after central nervous system trauma. Hyaluronic acid (HA), a nonsulfated glycosaminoglycan ubiquitous in all tissues, was investigated as a potential neural tissue engineering matrix.

Methods: Chick dorsal root ganglia were cultured in 3D hydrogel matrices composed of cross-linked thiol-modified HA or fibrin. Samples were cultured and images were acquired at 48-, 60-, and 192-hour time points. Images of all samples were analyzed at 48 hours of incubation to quantify the extent of neurite growth. Cultures in crosslinked thiolated HA exhibited more than a 50% increase in neurite length compared with fibrin samples. Furthermore, cross-linked thiolated HA supported neurites for the entire duration of the culture period, whereas fibrin cultures exhibited collapsed and degenerating extensions beyond 60 hours. Two concentrations of the thiolated HA (0.5 and 1%) were then placed at the site of a complete thoracic spinal cord transection in rats. The ability of the polymer to promote regeneration was tested using motor evoked potentials, retrograde axonal labeling, and behavioral assessments. There were no differences in any of the parameters between rats treated with the polymer and controls.

Conclusions: The use of a cross-linked HA scaffold promoted robust neurite outgrowth. Although there was no benefit from the polymer in a rodent spinal cord injury model, the findings in this study represent an early step in the development of semisynthetic extracellular matrice scaffolds for the treatment of neuronal injury.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources