Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr 27;282(17):12765-72.
doi: 10.1074/jbc.M700393200. Epub 2007 Mar 1.

Molecular analysis of the role of tyrosine 224 in the active site of Streptomyces coelicolor RppA, a bacterial type III polyketide synthase

Affiliations
Free article

Molecular analysis of the role of tyrosine 224 in the active site of Streptomyces coelicolor RppA, a bacterial type III polyketide synthase

Shengying Li et al. J Biol Chem. .
Free article

Abstract

Streptomyces coelicolor RppA (Sc-RppA), a bacterial type III polyketide synthase, utilizes malonyl-CoA as both starter and extender unit substrate to form 1,3,6,8-tetrahydroxynaphthalene (THN) (therefore RppA is also known as THN synthase (THNS)). The significance of the active site Tyr(224) for substrate specificity has been established previously, and its aromatic ring is believed to be essential for RppA to select malonyl-CoA as starter unit. Herein, we describe a series of Tyr(224) mutants of Sc-RppA including Y224F, Y224L, Y224C, Y224M, and Y224A that were able to catalyze a physiological assembly of THN, albeit with lower efficiency, challenging the necessity for the Tyr(224) aromatic ring. Steady-state kinetics and radioactive substrate binding analysis of the mutant enzymes corroborated these unexpected results. Functional examination of the Tyr(224) series of RppA mutants using diverse unnatural acyl-CoA substrates revealed the unique role of malonyl-CoA as starter unit substrate for RppA, leading to the development of a novel stericelectronic constraint model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources