Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;262(1 Pt 1):G137-43.
doi: 10.1152/ajpgi.1992.262.1.G137.

CRF in the paraventricular nucleus mediates gastric and colonic motor response to restraint stress

Affiliations

CRF in the paraventricular nucleus mediates gastric and colonic motor response to restraint stress

H Mönnikes et al. Am J Physiol. 1992 Jan.

Abstract

The role of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus (PVN) in the control of gastric emptying of a nonnutrient meal and colonic transit was investigated in conscious fasted rats chronically implanted with hypothalamic cannulas and catheters in both the stomach and proximal colon. CRF (0.06-0.6 nmol) microinfused unilaterally into the PVN resulted in a dose-dependent inhibition of gastric emptying (0-51%) and stimulation of colonic transit (0-93%). CRF (0.6 nmol)-induced delay in gastric emptying was inhibited by 50% by subdiaphragmatic vagotomy or atropine methyl nitrate (1 mg/kg ip), whereas the stimulation of colonic transit was completely abolished by atropine methyl nitrate and reduced by 19% by vagotomy. Microinfusion of CRF (0.6 nmol) into the lateral hypothalamus or central amygdala had no effect. Restraint exposure for 1 h delayed gastric emptying and stimulated colonic transit by 28 and 78%, respectively. Bilateral microinfusion of the CRF antagonist alpha-helical CRF-(9-41) (13 nmol) into the PVN before restraint abolished stress-induced alterations of gastric and colonic transit. The CRF antagonist did not alter basal gastric and colonic transit under basal conditions. These data indicate that the PVN is a specific responsive site for central CRF-induced alterations of gastric and colonic transit and suggest that endogenous CRF in the PVN plays a role in mediating restraint stress-related alterations of gastrointestinal transit.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources