Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;117(3):516-21.
doi: 10.1097/MLG.0b013e31802e9291.

Viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: implications for mucosal versus muscle use

Affiliations

Viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: implications for mucosal versus muscle use

Trace Caton et al. Laryngoscope. 2007 Mar.

Abstract

Objectives: The purpose of this study was to measure and compare biomechanical properties of commonly used vocal fold injectates Cymetra, Radiesse, Restylane, Hylaform, and one investigational injectate, Carbylan-GSX 5%, to determine suitability for mucosal injection.

Study design: Rheologic investigation.

Methods: Oscillatory shear stress was applied to five samples of each injectate using a parallel plate controlled stress rheometer. Shear stress, shear strain, and strain rate associated with the oscillatory shear deformation were computed from the prescribed torque and measured angular velocity; viscoelastic data were obtained on the basis of these functions. Values calculated included elastic shear moduli, viscous moduli, and dynamic viscosity as a function of oscillatory frequency (0.01-150 Hz).

Results: Elastic moduli for all samples increased as the frequency increased. Hyaluronan based materials were all comparable with each other and at least an order of magnitude lower than the stiffer and more viscous Cymetra and Radiesse. Carbylan-GSX 5% was found to have almost identical values to Hylaform with the exception of its mean viscosity, which was noticeably lower.

Conclusions: Hyaluronan based biomaterials offer less resistance to flow and stiffness and may be better suited for injections into the mucosa, whereas Cymetra and Radiesse appear to be appropriate for injections into muscle. Viscoelastic properties of Hylaform and Carbylan-GSX 5% were found to most resemble that of the human vocal fold mucosa.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources