Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 10;25(19):3913-21.
doi: 10.1016/j.vaccine.2007.01.101. Epub 2007 Feb 15.

Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells

Affiliations

Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells

Juliette Angel et al. Vaccine. .

Abstract

Cytotoxic T lymphocytes (CTL) are crucial in viral clearance and tumor growth control. Thus the induction of CTL activity is an important aim in vaccine development. We investigate an innovative delivery system for peptide transfer to the MHC class I processing pathway of APC with the aim to trigger CTL in the context of an antitumoral response. The strategy relies on a novel antigen delivery system termed "chimeric immunopotentiating reconstituted influenza virosomes" (CIRIV) targeting plasmacytoid dendritic cells (PDC). By using virosomes containing encapsulated Melan-A peptide and a PDC line developed in our laboratory, we evaluated the response of Melan-A specific T cells. Virosomes have the capacity to bind PDC and are endocyted within vesicles in the cytosol. This endocytosis is inhibited by neuraminidase, suggesting that it is mediated by sialic acid present on cell surface. Furthermore, PDC loaded with Melan-A virosomes can induce a Melan-A specific T cell activation. Interestingly, they activate T cells with a better efficiency than PDC loaded with a free peptide and when PDC where previously activated by a TLR ligand. These results indicate that virosomes could be a suitable delivery system for tumor peptide in immunotherapy of cancer.

PubMed Disclaimer

Publication types

MeSH terms