Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May-Jun;47(3):965-74.
doi: 10.1021/ci600397p. Epub 2007 Mar 6.

One- to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties

Affiliations

One- to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties

Chloé-Agathe Azencott et al. J Chem Inf Model. 2007 May-Jun.

Abstract

Many chemoinformatics applications, including high-throughput virtual screening, benefit from being able to rapidly predict the physical, chemical, and biological properties of small molecules to screen large repositories and identify suitable candidates. When training sets are available, machine learning methods provide an effective alternative to ab initio methods for these predictions. Here, we leverage rich molecular representations including 1D SMILES strings, 2D graphs of bonds, and 3D coordinates to derive efficient machine learning kernels to address regression problems. We further expand the library of available spectral kernels for small molecules developed for classification problems to include 2.5D surface and 3D kernels using Delaunay tetrahedrization and other techniques from computational geometry, 3D pharmacophore kernels, and 3.5D or 4D kernels capable of taking into account multiple molecular configurations, such as conformers. The kernels are comprehensively tested using cross-validation and redundancy-reduction methods on regression problems using several available data sets to predict boiling points, melting points, aqueous solubility, octanol/water partition coefficients, and biological activity with state-of-the art results. When sufficient training data are available, 2D spectral kernels in general tend to yield the best and most robust results, better than state-of-the art. On data sets containing thousands of molecules, the kernels achieve a squared correlation coefficient of 0.91 for aqueous solubility prediction and 0.94 for octanol/water partition coefficient prediction. Averaging over conformations improves the performance of kernels based on the three-dimensional structure of molecules, especially on challenging data sets. Kernel predictors for aqueous solubility (kSOL), LogP (kLOGP), and melting point (kMELT) are available over the Web through: http://cdb.ics.uci.edu.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources