The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage
- PMID: 17339369
- PMCID: PMC1832089
- DOI: 10.1101/gr.5826307
The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage
Abstract
Class 2, or DNA transposons, make up approximately 3% of the human genome, yet the evolutionary history of these elements has been largely overlooked and remains poorly understood. Here we carried out the first comprehensive analysis of the activity of human DNA transposons over the course of primate evolution using three independent computational methods. First, we conducted an exhaustive search for human DNA transposons nested within L1 and Alu elements known to be primate specific. Second, we assessed the presence/absence of 794 human DNA transposons at orthologous positions in 10 mammalian species using sequence data generated by The ENCODE Project. These two approaches, which do not rely upon sequence divergence, allowed us to classify DNA transposons into three different categories: anthropoid specific (40-63 My), primate specific (64-80 My), and eutherian wide (81-150 My). Finally, we used this data to calculate the substitution rates of DNA transposons for each category and refine the age of each family based on the average percent divergence of individual copies to their consensus. Based on these combined methods, we can confidently estimate that at least 40 human DNA transposon families, representing approximately 98,000 elements ( approximately 33 Mb) in the human genome, have been active in the primate lineage. There was a cessation in the transpositional activity of DNA transposons during the later phase of the primate radiation, with no evidence of elements younger than approximately 37 My. This data points to intense activity of DNA transposons during the mammalian radiation and early primate evolution, followed, apparently, by their mass extinction in an anthropoid primate ancestor.
Figures



Similar articles
-
Evolutionary history of mammalian transposons determined by genome-wide defragmentation.PLoS Comput Biol. 2007 Jul;3(7):e137. doi: 10.1371/journal.pcbi.0030137. PLoS Comput Biol. 2007. PMID: 17630829 Free PMC article.
-
Non-traditional Alu evolution and primate genomic diversity.J Mol Biol. 2002 Mar 8;316(5):1033-40. doi: 10.1006/jmbi.2001.5380. J Mol Biol. 2002. PMID: 11884141
-
Bats with hATs: evidence for recent DNA transposon activity in genus Myotis.Mol Biol Evol. 2007 Mar;24(3):632-9. doi: 10.1093/molbev/msl192. Epub 2006 Dec 5. Mol Biol Evol. 2007. PMID: 17150974
-
[Evolutionary recent insertions of mobile elements and their contribution to the structure of human genome].Zh Obshch Biol. 2012 Jan-Feb;73(1):3-20. Zh Obshch Biol. 2012. PMID: 22567964 Review. Russian.
-
Primate genomes.Genome Dyn. 2006;2:17-32. doi: 10.1159/000095090. Genome Dyn. 2006. PMID: 18753766 Review.
Cited by
-
Evolutionary rate of human tissue-specific genes are related with transposable element insertions.Genetica. 2012 Dec;140(10-12):513-23. doi: 10.1007/s10709-013-9700-2. Epub 2013 Jan 22. Genetica. 2012. PMID: 23337972
-
Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis.Ecol Evol. 2012 Nov;2(11):2912-33. doi: 10.1002/ece3.400. Epub 2012 Oct 16. Ecol Evol. 2012. PMID: 23170223 Free PMC article.
-
ELOA3: A primate-specific RNA polymerase II elongation factor encoded by a tandem repeat gene cluster.Sci Adv. 2023 Nov 24;9(47):eadj1261. doi: 10.1126/sciadv.adj1261. Epub 2023 Nov 22. Sci Adv. 2023. PMID: 37992162 Free PMC article.
-
TEs or not TEs? That is the evolutionary question.J Biol. 2009 Oct 23;8(9):83. doi: 10.1186/jbiol188. J Biol. 2009. PMID: 19863763 Free PMC article.
-
The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart.J Biol Chem. 2014 Apr 11;289(15):10930-10938. doi: 10.1074/jbc.M113.533216. Epub 2014 Feb 25. J Biol Chem. 2014. PMID: 24573677 Free PMC article.
References
-
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Gish W., Miller W., Myers E.W., Lipman D.J., Miller W., Myers E.W., Lipman D.J., Myers E.W., Lipman D.J., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. - PubMed
-
- Auge-Gouillou C., Bigot Y., Pollet N., Hamelin M.H., Meunier-Rotival M., Periquet G., Bigot Y., Pollet N., Hamelin M.H., Meunier-Rotival M., Periquet G., Pollet N., Hamelin M.H., Meunier-Rotival M., Periquet G., Hamelin M.H., Meunier-Rotival M., Periquet G., Meunier-Rotival M., Periquet G., Periquet G. Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett. 1995;368:541–546. - PubMed
-
- Caceres M., Ranz J.M., Barbadilla A., Long M., Ruiz A., Ranz J.M., Barbadilla A., Long M., Ruiz A., Barbadilla A., Long M., Ruiz A., Long M., Ruiz A., Ruiz A. Generation of a widespread Drosophila inversion by a transposable element. Science. 1999;285:415–418. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous