Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;81(6):1512-22.
doi: 10.1189/jlb.1206738. Epub 2007 Mar 5.

Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells

Affiliations

Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells

Elda Del Giudice et al. J Leukoc Biol. 2007 Jun.

Abstract

Cannabidiol (CBD), a prominent psychoinactive component of cannabis with negligible affinity for known cannabinoid receptors, exerts numerous pharmacological actions, including anti-inflammatory and immunosuppressive effects, the underlying mechanisms of which remain unclear. In the current study, we questioned whether CBD modulates activation of mast cells, key players in inflammation. By using the rat basophilic leukemia mast cell line (RBL-2H3), we demonstrate that CBD (3-10 muM) augments beta-hexosaminidase release, a marker of cell activation, from antigen-stimulated and unstimulated cells via a mechanism, which is not mediated by G(i)/G(o) protein-coupled receptors but rather is associated with a robust rise in intracellular calcium ([Ca(2+)](i)) levels sensitive to clotrimazole and nitrendipine (10-30 muM). This action, although mimicked by Delta(9)-tetrahydrocannabinol (THC), is opposite to that inhibitory, exerted by the synthetic cannabinoids WIN 55,212-2 and CP 55,940. Moreover, the vanilloid capsaicin, a full agonist of transient receptor potential channel VR1, did not affect [Ca(2+)](i)levels in the RBL-2H3 cells, thus excluding the involvement of this receptor in the CBD-mediated effects. Together, these results support existence of yet-to-be identified sites of interaction, i.e., receptors and/or ion channels associated with Ca(2+) influx of natural cannabinoids such as CBD and THC, the identification of which has the potential to provide for novel strategies and agents of therapeutic interest.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources